3 If we have time...
Example 4. Express $\iiint_{E} \sin (x+y z) d V$ as an iterated integral, where E lies below the surface $z=\underbrace{1+x^{2}+4 y^{2}}$ and above the region in the $x y$-plane bounded by the curves $x=2 y, x=0$, and $y=1$. $\underbrace{+x^{2}+y^{2}}_{u_{2}(x, y)}$
$\xrightarrow[u_{u_{1}(x, y)}^{0}]{\substack{\| \prime \\ y=\frac{x}{2}}}$

$$
\begin{aligned}
& \iiint_{E} \sin (x+y z) d V=\iint_{D}\left[\int_{0}^{1+x^{2}+4 y^{2}} \sin (x+y z) d z\right] d A \\
& =\int_{0}^{2} \int_{x / 2}^{1} \int_{0}^{1+x^{2}+y^{2}} \sin (x+y z) d z d y d x \quad(D \text { as Type I) } \\
& =\int_{0}^{1} \int_{0}^{2 y} \int_{0}^{1+x^{2}+y^{2}} \sin (x+y z) d z d x d y \quad \text { (D as Type II) }
\end{aligned}
$$

